Wednesday, April 30, 2008

Impacts of glacier retreat


The continued retreat of glaciers will have a number of different quantitative impacts. In areas that are heavily dependent on water runoff from glaciers that melt during the warmer summer months, a continuation of the current retreat will eventually deplete the glacial ice and substantially reduce or eliminate runoff. A reduction in runoff will affect the ability to irrigate crops and will reduce summer stream flows necessary to keep dams and reservoirs replenished. This situation is particularly acute for irrigation in South America, where numerous artificial lakes are filled almost exclusively by glacial melt.Central Asian countries have also been historically dependent on the seasonal glacier melt water for irrigation and drinking supplies. In Norway, the Alps, and the Pacific Northwest of North America, glacier runoff is important for hydropower.
Some of this retreat has resulted in efforts to slow down the loss of glaciers in the Alps. To retard melting of the glaciers used by certain Austrian ski resorts, portions of the Stubai and Pitztal Glaciers were covered with plastic. In Switzerland plastic sheeting is also used to reduce the melt of glacial ice used as ski slopes.While covering glaciers with plastic sheeting may prove advantageous to ski resorts on a small scale, this practice is not expected to be economically practical on a much larger scale.
Many species of freshwater and saltwater plants and animals are dependent on glacier-fed waters to ensure the cold water habitat to which they have adapted. Some species of freshwater fish need cold water to survive and to reproduce, and this is especially true with salmon and cutthroat trout. Reduced glacial runoff can lead to insufficient stream flow to allow these species to thrive. Alterations to the ocean currents, due to increased freshwater inputs from glacier melt, and the potential alterations to thermohaline circulation of the worlds oceans, may impact existing fisheries upon which humans depend as well.
The potential for major sea level rise depends mostly on a significant melting of the polar ice caps of Greenland and Antarctica, as this is where the vast majority of glacial ice is located. The British Antarctic Survey has determined from climate modeling that for at least the next 50 years, snowfall on the continent of Antarctica should continue to exceed glacial losses from global warming. The amount of glacial loss on the continent of Antarctica is not increasing significantly, and it is not known if the continent will experience a warming or a cooling trend, although the Antarctic Peninsula has warmed in recent years, causing glacier retreat in that region.If all the ice on the polar ice caps were to melt away, the oceans of the world would rise an estimated 70 m (230 ft). However, with little major melt expected in Antarctica, sea level rise of not more than 0.5 m (1.6 ft) is expected through the 21st century, with an average annual rise of 0.004 m (0.013 ft) per year. Thermal expansion of the world's oceans will contribute, independent of glacial melt, enough to double those figures
Thermohaline circulation


The thermohaline circulation (THC) is the global density-driven circulation of the oceans. Derivation is from thermo- for heat and -haline for salt, which together determine the density of sea water. Wind-driven surface currents (such as the Gulf Stream) head polewards from the equatorial Atlantic Ocean, cooling all the while and eventually sinking at high latitudes (forming North Atlantic Deep Water). This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters (with a transit time of around 1600 years) upwell in the North Pacific . Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's ocean a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.
The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyer, the global conveyor belt, or, most commonly, the meridional overturning circulation
Movement of thermohaline circulation
Formation and movement of the deep water masses at North Atlantic Ocean, creates sinking water masses that fills the basin and flows very slowly into the deep abyssal plains of the Atlantic. This high latitude cooling and the low latitude heating drives the movement of the deep water a polar southward flow. The deep water flows through Antarctic Ocean Basin around South Africa where it is split into two routes: one into the Indian Ocean and one past Australia into the Pacific.
At the Indian Ocean, some of the cold and salty water from Atlantic -- drawn by the flow of warmer and fresher upper ocean water from the tropical Pacific -- causes a vertical exchange of dense, sinking water with lighter water below. It is known as overturning. In the Pacific Ocean, the rest of the cold and salty water from the Atlantic undergoes Haline forcing and slowly becomes warmer and fresher.
The out-flowing undersea of cold and salty water makes the sea level of the Atlantic slightly lower than the Pacific and salinity or halinity of water at the Atlantic higher than the Pacific. This generates a large but slow flow of warmer and fresher upper ocean water from the tropical Pacific to the Indian Ocean through the Indonesian Archipelago to replace the cold and salty Antarctic Bottom Water. This is also known as Haline forcing (net high latitude freshwater gain and low latitude evaporation). This warmer, fresher water from the Pacific flows up through the South Atlantic to Greenland, where it cools off and undergoes evaporative cooling and sinks to the ocean floor, providing a continuous thermohaline circulation.
Hence, a recent and popular name for the thermohaline circulation, emphasizing the vertical nature and pole-to-pole character of this kind of ocean circulation, is the meridional overturning circulation.
The deep water masses that participate in the MOC have chemical, temperature and isotopic ratio signatures and can be traced, their flow rate calculated, and their age determined.

Sponsored Links