Saturday, May 10, 2008

Interplay of factors


If a certain forcing (for example, solar variation) acts to change the climate, then there may be mechanisms that act to amplify or reduce the effects. These are called positive and negative feedbacks. As far as is known, the climate system is generally stable with respect to these feedbacks: positive feedbacks do not "run away". Part of the reason for this is the existence of a powerful negative feedback between temperature and emitted radiation: radiation increases as the fourth power of absolute temperature.
However, a number of important positive feedbacks do exist. The glacial and interglacial cycles of the present ice age provide an important example. It is believed that orbital variations provide the timing for the growth and retreat of ice sheets. However, the ice sheets themselves reflect sunlight back into space and hence promote cooling and their own growth, known as the ice-albedo feedback. Further, falling sea levels and expanding ice decrease plant growth and indirectly lead to declines in carbon dioxide and methane. This leads to further cooling. Conversely, rising temperatures caused, for example, by anthropogenic emissions of greenhouse gases could lead to decreased snow and ice cover, revealing darker ground underneath, and consequently result in more absorption of sunlight.
Water vapor, methane, and carbon dioxide can also act as significant positive feedbacks, their levels rising in response to a warming trend, thereby accelerating that trend. Water vapor acts strictly as a feedback (excepting small amounts in the stratosphere), unlike the other major greenhouse gases, which can also act as forcings.
More complex feedbacks involve the possibility of altered water currents with in the oceans or air currents with in the atmosphere. A significant concern is that melting glacial ice from Greenland may interfere and changing the thermohaline circulation of water in the North Atlantic, affecting the Gulf Stream which brings warmer water to replace sinking colder water; which would effect the distribution of heat to Europe and the east coast of the United States.
Other potential feedbacks are not well understood and may either inhibit or promote warming. For example, it is unclear whether rising temperatures promote or inhibit vegetative growth, which could in turn draw down either more or less carbon dioxide. Similarly, increasing temperatures may lead to either more or less cloud cover.Since on balance cloud cover has a strong cooling effect, any change to the abundance of clouds also affects climate.

Sponsored Links