Pollution produced by humans may be seriously weakening the Earth's water cycle — reducing rainfall and threatening fresh water supplies. A 2001 study by researchers at the Scripps Institution of Oceanography suggests that tiny particles of soot and other pollutants have a significant effect on the hydrological cycle. According to Professor V. Ramanathan: "The energy for the hydrological cycle comes from sunlight. As sunlight heats the ocean, water escapes into the atmosphere and falls out as rain. So as aerosols cut down sunlight by large amounts, they may be spinning down the hydrological cycle of the planet."
Large scale changes in weather patterns may also have been caused by global dimming. Climate models speculatively suggest that this reduction in sunshine at the surface may have led to the failure of the monsoon in sub-Saharan Africa during the 1970s and 1980s, together with the associated famines such as the Sahel drought, caused by Northern hemisphere pollution cooling the Atlantic.Because of this, the Tropical rain belt may not have risen to its northern latitudes, thus causing an absence of seasonal rains. This claim is not universally accepted and is very difficult to test.
It is also concluded that the imbalance between global dimming and global warming at the surface leads to weaker turbulent heat fluxes to the atmosphere. This means globally reduced evaporation and hence precipitation occur in a dimmer and warmer world, which could ultimately lead to a more humid atmosphere in which it rains less.
A natural form of large scale environmental shading/dimming has been identified that affected the 2006 northern hemisphere hurricane season. The NASA study found that several major dust storms in June and July in the Sahara desert sent dust drifting over the Atlantic Ocean and through several effects caused cooling of the waters — and thus dampening the development of hurricanes
Sunday, May 11, 2008
Relationship to hydrological cycle
Posted by garfield at 6:02 AM
Labels: articles, globalcrisis2.blogspot.com, hydrological cycle, NASA